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Figure 1. Model overview. |AUNet consists of a Pixel decoder and a Transformer decoder. The encoder extracts multi-scale features used as skip connections in the Pixel decoder. Each
decoder block combines these features with CoordConv-based positional encodings and applies stacked depth-wise convolutions followed by a Squeeze-and-Excitation (SE) block to
produce refined mask features. The Transformer decoder then refines learnable queries over multiple layers using these mask features with deep supervision.
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Abstract Design
Instance segmentation is critical in biomedical imaging to distinguish individual )
objects like cells, which often overlap and vary in size. We propose IAUNet, a novel Pixel Decoder o000 L q
query-based U-Net architecture that retains the full U-Net design and adds a e A lightweight Pixel decoder is designed to refine A i
lightweight convolutional Pixel decoder for efficient multi-scale feature aggregation. multi-scale features. 3dd & norm ke
To enhance instance segmentation, we incorporate a Transformer decoder with deep e Features are processed through lightweight 4
supervision that refines object queries across layers. We also introduce Revvity-25, a depth-wise convolutions. FFN
new 2025 dataset with detailed annotations of overlapping cell cytoplasm in e CoordConv injects explicit positional information into the 1
brightfield images. IAUNet achieves strong results, outperforming existing decoder without increasing computational complexity. add & norm
convolutional, transformer-based, and query-based models. e Squeeze-and-Excitation (SE) block enhances feature 4
refinement for better instance separation. Self‘at:e”tion
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e Transformer decoder learns instance-level representations. cross-attention
e Uses learnable queries for potential objects. v 4kt af
e Queries attend to mask features via cross- and X, ‘o000 : N Nl -
self-attention. bemmm - oo SRR g
+ — masks features queries
e Three blocks per layer refine semantic and spatial content.
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Figure 2. Multimodal annotation workflow for the Revvity-25 dataset. MéSk R-CAN .‘14] RS0 100 977123741 06190446 4aM 156
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Figure 3. Visualization of instance segmentation predictions across different state-of-the-

. , Table 1. Instance segmentation on our Revvity-25 dataset. |AUNet outperforms strong query-
art models (using ResNetb0 backbone). We also report per-image AP score.

based baselines as well as other state-of-the-art models when training with fewer parameters
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