IAUNet: Instance-Aware U-Net

Yaroslav Prytula^{1,2} Illia Tsiporenko¹, Ali Zeynalli¹, Dmytro Fishman^{1,3}

¹Institute of Computer Science, University of Tartu ²Ukrainian Catholic University, ³STACC OÜ, Tartu, Estonia

UNIVERSITY OF TARTU

Brightfield

Microscopy Image

Brightfield

Semantic Segmentation

Brightfield

Instance Segmentation

Motivation

Brightfield captures images by transmitting standard **white light** through the sample

Contributions

IAUNet

Contributions

IAUNet

LIVECell

EVICAN

ISBI2014

Revvity-25

- No overlaps
- Missing annotations Coarse annotations
- Many instances
- Large Dataset
- High visual complexity

- No overlaps
- Few instances
- Large Dataset
- Low visual complexity

- X Simple annotations
- Few instances
- Small Dataset
- Low visual complexity

Overlaps

- Precise annotations
- Many instances
- Small Dataset

Figure 1. Revvity-25 Dataset.

Contributions

IAUNet

Input Image (f) Pixel Decoder Pixel Decoder Coutput Instance Segmentation Pixel Decoder Block coords. Co

Related Works

	U-Net	Mask R-CNN	Mask2Former	MaskDINO	Cellpose	IAUNet
Instance segmentation						
Overlaps						
Single-stage						
No NMS						
U-Net Pixel Decoder						
Query selection						

Pixel Decoder Block

Each query encodes features about a potential object

Transformer Decoder Block

			LIVE	ECell	EVIC.	$AN2_E$	EVIC.	$AN2_M$	EVIC.	$AN2_D$	ISB1	2014		
Models	backbones	num_queries	AP	AP_{50}	#params.	FLOPs								
Models with Convolut	ion-Based Bac	kbones												
Mask R-CNN [14]	R50	100	<u>44.7</u>	<u>74.2</u>	48.1	75.9	20.7	42.5	19.1	39.8	<u>58.9</u>	88.7	44M	115G
PointRend [34]	R50	100	44.0	73.5	26.6	47.9	18.0	38.5	13.4	28.3	60.0	88.7	56M	66G
Mask2Former [19]	R50	100	43.7	73.8	<u>53.4</u>	<u>89.1</u>	29.1	54.9	24.2	50.4	58.5	<u>87.5</u>	44M	67G
MaskDINO [20]	R50	100	43.3	73.5	50.7	83.9	<u>29.3</u>	<u>57.9</u>	22.0	41.9	55.4	86.8	44M	64G
IAUNet (ours)	R50	100	45.3	75.3	58.0	91.8	32.1	59.0	24.9	<u>45.4</u>	56.0	85.0	39M	49G
Mask R-CNN [14]	R101	100	44.2	73.2	41.5	69.9	23.3	46.9	17.8	36.7	60.7	88.8	63M	134G
PointRend [34]	R101	100	44.0	<u>73.7</u>	41.3	65.2	20.2	39.3	14.8	32.1	<u>60.3</u>	89.2	75M	86G
Mask2Former [19]	R101	100	44.0	73.5	<u>54.4</u>	<u>87.8</u>	27.1	51.7	20.4	42.4	59.5	88.6	63M	86G
MaskDINO [20]	R101	100	43.4	73.6	53.7	85.0	31.8	59.2	27.1	51.3	55.7	87.4	63M	84G
IAUNet (ours)	R101	100	45.4	75.5	58.3	92.7	32.9	59.6	<u>26.9</u>	<u>50.0</u>	56.5	87.1	58M	69G
Models with Transform	mer-Based Ba	ckbones												
Mask R-CNN [14]	Swin-S	100	44.3	73.3	52.6	91.7	27.0	59.2	20.2	50.2	<u>61.9</u>	<u>90.7</u>	69M	141G
PointRend [34]	Swin-S	100	43.9	73.5	55.1	89.2	30.1	61.6	24.4	54.6	62.1	91.0	81M	93G
Mask2Former [19]	Swin-S	100	44.6	74.3	65.2	96.8	36.2	<u>66.7</u>	30.9	<u>62.7</u>	57.1	87.3	69M	93G
MaskDINO [20]	Swin-S	100	43.9	73.8	57.0	86.9	33.6	64.9	27.6	56.9	52.7	85.3	71M	181G
MaskDINO [20]	Swin-S	300	44.8	75.1	56.5	91.8	<u>35.0</u>	70.7	<u>30.2</u>	64.3	51.2	83.4	71M	187G
IAUNet (ours)	Swin-S	100	<u>45.4</u>	<u>75.4</u>	58.8	93.1	32.2	61.9	27.7	54.1	61.1	90.1	64M	76G
IAUNet (ours)	Swin-S	300	45.6	76.4	<u>60.9</u>	<u>93.6</u>	33.2	62.0	29.6	58.0	61.8	89.8	64M	87G
Mask R-CNN [14]	Swin-B	100	44.2	73.1	52.0	89.0	26.7	60.3	24.8	55.5	62.4	91.5	107M	186G
PointRend [34]	Swin-B	100	44.0	73.7	58.6	91.0	34.1	64.6	25.8	52.0	<u>62.7</u>	91.5	119M	137G
Mask2Former [19]	Swin-B	100	44.9	74.7	55.0	92.5	31.4	60.9	27.7	56.6	58.1	88.4	107M	138G
MaskDINO [20]	Swin-B	100	44.3	74.1	57.3	91.1	37.3	<u>75.7</u>	30.1	<u>65.6</u>	53.5	86.6	110M	226G
MaskDINO [20]	Swin-B	300	45.2	75.8	57.9	91.6	39.1	78.8	34.0	72.3	53.3	84.8	110M	232G
IAUNet (ours)	Swin-B	100	<u>45.5</u>	75.6	<u>59.6</u>	<u>93.5</u>	34.2	65.7	28.9	56.9	61.5	<u>90.8</u>	102M	120G
IAUNet (ours)	Swin-B	300	45.8	76.7	61.2	94.8	<u>38.0</u>	69.6	<u>30.7</u>	59.9	63.0	91.5	102M	132G

Table 1. Instance segmentation on LIVECell, EVICAN2 (Easy, Medium, Difficult test subsets), and ISBI2014.

			LIVE	ECell	EVIC.	$AN2_E$	EVIC.	$AN2_M$	EVIC	$AN2_D$	ISBI	2014		
Models	backbones	num_queries	AP	AP_{50}	#params.	FLOPs								
Models with Convolute	ion-Based Bac	kbones												
Mask R-CNN [14]	R50	100	<u>44.7</u>	<u>74.2</u>	48.1	75.9	20.7	42.5	19.1	39.8	<u>58.9</u>	88.7	44M	115G
PointRend [34]	R50	100	44.0	73.5	26.6	47.9	18.0	38.5	13.4	28.3	60.0	88.7	56M	66G
Mask2Former [19]	R50	100	43.7	73.8	<u>53.4</u>	89.1	29.1	54.9	24.2	50.4	58.5	<u>87.5</u>	44M	67G
MaskDINO [20]	R50	100	43.3	73.5	50.7	83.9	<u>29.3</u>	<u>57.9</u>	22.0	41.9	55.4	86.8	44M	64G
IAUNet (ours)	R50	100	45.3	75.3	58.0	91.8	32.1	59.0	24.9	<u>45.4</u>	56.0	85.0	39M	49G
Mask R-CNN [14]	R101	100	44.2	73.2	41.5	69.9	23.3	46.9	17.8	36.7	60.7	88.8	63M	134G
PointRend [34]	R101	100	44.0	<u>73.7</u>	41.3	65.2	20.2	39.3	14.8	32.1	<u>60.3</u>	89.2	75M	86G
Mask2Former [19]	R101	100	44.0	73.5	<u>54.4</u>	<u>87.8</u>	27.1	51.7	20.4	42.4	59.5	88.6	63M	86G
MaskDINO [20]	R101	100	43.4	73.6	53.7	85.0	31.8	<u>59.2</u>	27.1	51.3	55.7	87.4	63M	84G
IAUNet (ours)	R101	100	45.4	75.5	58.3	92.7	32.9	59.6	<u>26.9</u>	<u>50.0</u>	56.5	87.1	58M	69G
Models with Transform	mer-Based Bac	ckbones												
Mask R-CNN [14]	Swin-S	100	44.3	73.3	52.6	91.7	27.0	59.2	20.2	50.2	<u>61.9</u>	<u>90.7</u>	69M	141G
PointRend [34]	Swin-S	100	43.9	73.5	55.1	89.2	30.1	61.6	24.4	54.6	62.1	91.0	81M	93G
Mask2Former [19]	Swin-S	100	44.6	74.3	65.2	96.8	36.2	<u>66.7</u>	30.9	<u>62.7</u>	57.1	87.3	69M	93G
MaskDINO [20]	Swin-S	100	43.9	73.8	57.0	86.9	33.6	64.9	27.6	56.9	52.7	85.3	71M	181G
MaskDINO [20]	Swin-S	300	44.8	75.1	56.5	91.8	<u>35.0</u>	70.7	30.2	64.3	51.2	83.4	71M	187G
IAUNet (ours)	Swin-S	100	<u>45.4</u>	<u>75.4</u>	58.8	93.1	32.2	61.9	27.7	54.1	61.1	90.1	64M	76G
IAUNet (ours)	Swin-S	300	45.6	76.4	<u>60.9</u>	<u>93.6</u>	33.2	62.0	29.6	58.0	61.8	89.8	64M	87G
Mask R-CNN [14]	Swin-B	100	44.2	73.1	52.0	89.0	26.7	60.3	24.8	55.5	62.4	91.5	107M	186G
PointRend [34]	Swin-B	100	44.0	73.7	58.6	91.0	34.1	64.6	25.8	52.0	<u>62.7</u>	91.5	119M	137G
Mask2Former [19]	Swin-B	100	44.9	74.7	55.0	92.5	31.4	60.9	27.7	56.6	58.1	88.4	107M	138G
MaskDINO [20]	Swin-B	100	44.3	74.1	57.3	91.1	37.3	<u>75.7</u>	30.1	<u>65.6</u>	53.5	86.6	110M	226G
MaskDINO [20]	Swin-B	300	45.2	<u>75.8</u>	57.9	91.6	39.1	78.8	34.0	72.3	53.3	84.8	110M	232G
IAUNet (ours)	Swin-B	100	<u>45.5</u>	75.6	<u>59.6</u>	<u>93.5</u>	34.2	65.7	28.9	56.9	61.5	<u>90.8</u>	102M	120G
IAUNet (ours)	Swin-B	300	45.8	76.7	61.2	94.8	<u>38.0</u>	69.6	<u>30.7</u>	59.9	63.0	91.5	102M	132G

 Table 1. Instance segmentation on LIVECell, EVICAN2 (Easy, Medium, Difficult test subsets), and ISBI2014.

SBI2014

Revv	ity-	25	
nevv	uy-	23	

Models	backbones	num_queries	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	#params.	FLOPs
Models with Convolution-Based Backbones										
Mask R-CNN [14]	R50	100	39.7	77.2	37.4	0.6	19.0	44.6	44M	115G
PointRend [34]	R50	100	42.2	79.4	40.9	0.4	21.7	47.3	56M	66G
Mask2Former [19]	R50	100	<u>46.4</u>	79.8	<u>49.9</u>	0.7	<u>25.7</u>	<u>52.8</u>	44M	67G
MaskDINO [20]	R50	100	45.6	80.4	48.2	1.8	22.3	51.8	44M	64G
IAUNet (ours)	R50	100	49.7	82.1	54.8	0.6	27.3	56.0	39M	49G
Mask R-CNN [14]	R101	100	40.7	77.5	39.9	0.4	20.1	45.8	63M	134G
PointRend [34]	R101	100	42.9	79.3	42.5	0.0	18.4	48.9	75M	86G
Mask2Former [19]	R101	100	47.2	80.1	<u>51.8</u>	1.7	<u>25.7</u>	53.3	63M	86G
MaskDINO [20]	R101	100	<u>47.3</u>	<u>81.0</u>	50.4	<u>0.9</u>	23.0	<u>53.5</u>	63M	84G
IAUNet (ours)	R101	100	51.5	84.7	56.1	1.7	29.2	57.8	58M	69G
Models with Transfor	mer-Based Ba	ckbones								
Mask R-CNN [14]	Swin-S	100	24.7	63.4	12.5	0.0	7.3	28.9	69M	141G
PointRend [34]	Swin-S	100	43.6	80.0	43.0	0.5	21.5	48.9	81M	93G
Mask2Former [19]	Swin-S	100	51.2	83.3	56.4	2.7	27.7	58.0	69M	93G
MaskDINO [20]	Swin-S	100	50.3	83.2	53.9	4.7	27.6	56.1	71M	181G
MaskDINO [20]	Swin-S	300	49.4	83.6	53.3	2.9	25.8	55.3	71M	187G
IAUNet (ours)	Swin-S	100	<u>53.0</u>	<u>85.7</u>	<u>57.0</u>	1.3	29.7	<u>59.1</u>	64M	76G
IAUNet (ours)	Swin-S	300	53.3	86.0	59.6	1.6	<u>29.4</u>	59.8	64M	87G
Mask R-CNN [14]	Swin-B	100	27.1	64.9	17.2	0.1	9.7	31.2	107M	186G
PointRend [34]	Swin-B	100	45.2	80.1	47.9	0.1	23.0	50.9	119M	137G
Mask2Former [19]	Swin-B	100	52.0	83.6	<u>58.4</u>	<u>1.1</u>	27.8	59.0	107M	138G
MaskDINO [20]	Swin-B	100	50.5	83.5	54.9	2.0	27.1	56.4	110M	226G
MaskDINO [20]	Swin-B	300	50.4	84.3	54.8	0.8	26.3	56.6	110M	232G
IAUNet (ours)	Swin-B	100	<u>53.5</u>	86.1	59.4	0.8	30.5	<u>59.7</u>	102M	120G
IAUNet (ours)	Swin-B	300	53.7	86.5	59.4	1.0	30.0	60.3	102M	132G

Table 2. Instance segmentation on our Revvity-25 dataset. IAUNet outperforms strong query-based baselines as well as other state-of-the-art models when training with fewer parameters

Figure 2. Visualization of instance segmentation predictions across different state-of-the-art models (using ResNet50 backbone). We also report per-image AP score.

Conclusions

- We introduce **IAUNet**, a novel model for cell instance segmentation that integrates a **lightweight convolutional Pixel decoder** and a **Transformer decoder** for efficient multi-scale object query refinement.

Conclusions

- We introduce IAUNet, a novel model for cell instance segmentation that integrates a lightweight convolutional Pixel decoder and a Transformer decoder for efficient multi-scale object query refinement.
- We present the **2025 Revvity Full Cell Segmentation Dataset**, featuring detailed and validated annotations for evaluating segmentation models on brightfield images.

Thank you!

UNIVERSITY OF TARTU

Institute of Computer Science

Armed Forces of Ukraine

Appendix

Ablations

We investigate the **benefit** of adding different **decoder components**.

Adding **CoordConv** improves object localization.

Decoder	AP	AP_{50}	AP_{75}	#params.	FLOPs
IAUNet (R50)	43.8	73.1	47.4	34M	42G
$+$ mask branch X_m	44.0	73.2	47.9	34M	42G
+ FFN (2048 \rightarrow 1024)	44.1	73.2	48.0	32M	42G
+ SE block [68]	44.2	73.3	48.1	32M	42G
+ CoordConv [67]	44.7	74.1	<u>48.7</u>	32M	42G
$+L (1 \rightarrow 3)$ (round-robin.)	44.3	74.0	48.1	39M	49G
$+L (1 \rightarrow 3) (\text{seq.})$	<u>45.1</u>	<u>74.4</u>	49.4	39M	49G
+ deep_supervision	45.3	75.3	49.4	39M	49G

Figure <>. Visualization of instance segmentation predictions across different state-of-the-art models (using ResNet50 backbone). We also report per-image AP score.

Ablations

We observe consistent gains when increasing the query count from 100 to 300 and 500

num_queries	AP	AP_{50}	AP_{75}	FLOPs
100	45.3	75.3	49.4	49G
300	<u>45.9</u>	<u>76.5</u>	<u>50.4</u>	61G
500	46.1	76.8	50.8	73G
1000	45.3	76.3	50.0	104G

Figure <>. Scaling the number of object queries benefits the model

Ablations

We observe consistent gains when increasing the query count from 100 to 300 and 500

Pixel Decoder	AP	AP_{50}	AP_{75}	FLOPs
+ full skip	44.7	73.9	48.9	146G
$+1 \times 1$ skip concat	44.2	<u>73.8</u>	<u>48.3</u>	135G
$+1 \times 1$ skip add	<u>44.3</u>	73.3	48.2	132G
+ light mask head	43.8	73.1	47.4	42G

Figure <>. Scaling the number of object queries benefits the model

Revvity-25

- High-resolution (1080×1080)
- 110 brightfield images
- 2,937 expert-validated cell instances
- average of **60** points per cell and up to **400** points for cells with complex morphology
- On average 27 manually labeled
- 7 cell lines

mouse fibroblasts (NIH/3T3)

canine kidney epithelial cells (MDCK)

human cervical adenocarcinoma (HeLa)

human breast adenocarcinoma (MCF7)

human lung carcinoma (A549)

human hepatocellular carcinoma (HepG2)

human fibrosarcoma (HT1080)