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Motivation
Brightfield captures images by transmitting  

standard white light through the sample

https://www.revvity.com/product/opera-phenix-plus-system-hh14001000
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Revvity-25

Figure 1. Revvity-25 Dataset. 9
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Instance-Aware UNet (IAUNet)
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Pixel Decoder Block

- Refines multi-scale features.  
- Lightweight depth-wise convolutions.  
- CoordConv injects explicit positional information. 
- Squeeze-and-Excitation (SE) block enhances 

feature refinement.
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- Learns instance-level representations.  
- Learnable queries as potential objects.  
- Queries attend to mask features.  
- Refine semantic and spatial content.

Block 0 Block 1 Block 2
Learnable queries

cell 0 

cell 1 

cell 2 

cell 3 

Each query encodes features about a potential object

q ∈ ℝN×D 18



Transformer Decoder Block

- Learns instance-level representations.  
- Learnable queries as potential objects.  
- Queries attend to mask features.  
- Refine semantic and spatial content.

Block 0 Block 1 Block 2



Table 1. Instance segmentation on LIVECell, EVICAN2 (Easy, Medium, Difficult test subsets), and ISBI2014.
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Table 2. Instance segmentation on our Revvity-25 dataset.  IAUNet outperforms strong query-
based baselines as well as other state-of-the-art models when training with fewer parameters

Revvity-25
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Figure 2. Visualization of instance segmentation predictions across different state-of-the-art models  
(using ResNet50 backbone). We also report per-image AP score. 
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Conclusions

- We introduce IAUNet, a novel model for cell instance segmentation that 
integrates a lightweight convolutional Pixel decoder and a Transformer 
decoder for efficient multi-scale object query refinement.
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- We introduce IAUNet, a novel model for cell instance segmentation that 
integrates a lightweight convolutional Pixel decoder and a Transformer 
decoder for efficient multi-scale object query refinement. 

- We present the 2025 Revvity Full Cell Segmentation Dataset, featuring 
detailed and validated annotations for evaluating segmentation models on 
brightfield images.

25

Conclusions%



Thank you! ❤
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Appendix



Ablations

Figure <>. Visualization of instance segmentation predictions across different state-of-the-art models  
(using ResNet50 backbone). We also report per-image AP score. 

We investigate the benefit of adding different decoder components. 
Adding CoordConv improves object localization. 

A.1



Ablations

Figure <>. Scaling the number of object queries benefits the model

We observe consistent gains when increasing  
the query count from 100 to 300 and 500
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Revvity-25

- High-resolution (1080 × 1080) 
- 110 brightfield images 
- 2,937 expert-validated cell instances 
- average of 60 points per cell and up to 400 

points for cells with complex morphology 
- On average 27 manually labeled 
- 7 cell lines

mouse fibroblasts (NIH/3T3) 
canine kidney epithelial cells (MDCK) 
human cervical adenocarcinoma (HeLa) 
human breast adenocarcinoma (MCF7) 
human lung carcinoma (A549) 
human hepatocellular carcinoma (HepG2) 
human fibrosarcoma (HT1080)
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